The MRI-Food team aims to increase our understanding of the structure of natural and processed agricultural and agri-food products (bioproducts) at different scales.
The purpose of the research is to improve understanding and model structural changes along with transfers of matter and energy with the aim of optimizing and improving processes within the agri-food industry.

The team is therefore developing low field Nuclear Magnetic Resonance (NMR) and MRI methods that they are then adapting with customized devices to recreate typical processing currently used in the industry. The purpose of this approach is to develop thorough metrological expertise in the type of information acquired (chemical, biological and physical) and scales studied (from molecular to macroscopic) while remaining as close as possible to the scale of naturally occurring matrices within the agricultural and agri-food industries (without sampling.)


Examples of research

Evaluating the quality of dairy products

Selected publications by the team

MUSSE, M., LEPORT, L., CAMBERT, M., DEBRANDT, W., SORIN, C., BOUCHEREAU, A., MARIETTE, F. - 2017. A mobile NMR lab for leaf phenotyping in the field. Plant Methods, vol. 13, n° 53, p. 13-53

RONDEAU MOURO, C., KOVRLIJA, R., GAMBAROTA, G., SAINT-JALMES, H. - 2017. mu-ViP: Customized virtual phantom for quantitative magnetic resonance micro-imaging at high magnetic field. Journal of Magnetic Resonance, vol. 275, p. 73-79  

DELIGNY, C., COLLEWET, G., LUCAS, T. - 2017. Quantitative MRI study of layers and bubbles in Danish pastry during the proving process. Journal of Food Engineering, vol. 203, p. 6-15  

KOVRLIJA, R., RONDEAU MOURO, C. - 2017. Multi-scale NMR and MRI approaches to characterize starchy products. Food Chemistry, vol. 236, p. 2-14  

NICOLAS, V., VANIN, F., GRENIER, D., LUCAS, T., DOURSAT, C., FLICK, D.- 2016. Modeling bread baking with focus on overall deformation and local porosity evolution. AICHE JOURNAL, vol. 62, 11 : 3847-3863.

PICAUD, J.,  COLLEWET, G., IDIER, J. - 2015. Quantification of mass fat fraction in fish using water-fat separation MRI. Magnetic Resonance Imaging 34: 44-50.


  The team’s research is currently unique in Europe and its use of partnerships and transfers has naturally led it
  to contribute to the establishment of the PRISM national technological platform (Rennes Platform for Imaging and Structural and Metabolic Spectroscopy). 

Nuclear Magnetic Resonance is a powerful tool that allows access to molecular and macroscopic information, making it possible to characterize and monitor physical and chemical phenomena that exist across a wide range of length and time scales. They provide information on structures and dynamics of structures at the molecular and micronic level (fusion, crystallization, coagulation, gelification, location and interaction of water with solutes and macromolecules, etc.). MRI imaging gives access to the structural heterogeneity of products on a millimetric scale (tissue distribution, water or fat crystallization, etc.) and to the concentration, speed and temperature profiles of products undergoing processing.

The MRI-Food research team conducts research as part of an ISO 9001 : v. 2015 certified quality management system.


  The World of Science is Talking about Us -  Irstea's Spot Magazine

Recent PhD dissertations

"Development of new NMR methods for the quantitative and multiscale measurement of water transfer in starch-based matrices" supported by Ruzica Kovrlija. This work has proposed two new methodologies to study the transfer of water and matter over a wide range of time and distance. The first was to implement new 2D NMR signal acquisition and processing methods and the second uses new methods in micro-imaging.

"Subcellular organization and metabolic remobilization during senescence in rapeseed: effects of abiotic stress" supported by Clément Sorin. This thesis, conducted in collaboration with the UMR IGEPP (Alain Bouchereau & Laurent Leport) demonstrates the potential of NMR for the study and characterization of the senescence of rapeseed leaves. To consult the dedicated page "Laboratory RMN Mobile to "Mobile Laboratory RMN to follow the development of the colza in field"

 "Characterization of the spatial microstructure of the apple in relation to its mechanical properties by quantitative methods of MRI" this thesis subject supported by Guillaume Winisdorffer. This thesis was done in collaboration with the UR BIA in Nantes (Marc Lahaye). This work presents new magnetic resonance imaging methods for the quantification of the watery conditions of apples in relation to the mechanical properties of tissues.

 "Modeling and visualization of bubble growth in an evolutionary and heterogeneous viscoelastic medium" supported by Yannick Laridon. This work, carried out in collaboration with the company Bel, allowed us to characterize, model and prioritize the mechanisms involved in the growth of bubbles in a pressed cheese at the scale of the bubble.


Facilities and equipment


The team

Scientists Engineers and
Assistant Engineers**

Post-Doctoral Researchers
and PhD Researchers*

Corinne Rondeau

Guylaine Collewet
David Grenier 
Tiphaine Lucas
François Mariette
Maja Musse
Corinne Rondeau

Mireille Cambert**
Sylvain Challois
Yves Diascorn
Vincent Louveau
Stéphane Quellec

Christian El Hajj*
Kossigan B. Dedey
Célia Godfrin
Mélanie Hupel
Rodolphe Leforestier
Charlotte Nirma
Jérémy Pépin
Judicaël Rouillac**